Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Anal Chem ; 94(44): 15472-15480, 2022 11 08.
Article in English | MEDLINE | ID: covidwho-2087112

ABSTRACT

Integrated clustered regularly interspaced short palindromic repeat (CRISPR)-loop-mediated amplification (LAMP) technology is of great importance in CRISPR-based diagnostic systems, which urgently needs to be developed to improve diagnostic accuracy. A labor-free, contamination-free, and fully automated droplet manipulation platform for the CRISPR-LAMP technology has not been developed before. Herein, we propose a fully automated CRISPR-LAMP platform, which can precisely manipulate the CRISPR-LAMP droplet and perform combined reactions with high sensitivity and specificity. SARS-CoV-2 Spike T478K, D614G, P681R, and P681H mutations, typical point mutations of B.1.617.2 (Delta) and Omicron variants, are monitored with this platform with a detection limit of 102 copies/µL. Allele discrimination between the mutants and wild type is significant with the designed one/two-mismatch CRISPR RNA (crRNA) at a limit of 102 copies/µL. Chemically synthesized and modified crRNAs greatly increase the CRISPR-LAMP signal, which advance the wide application. Combined with the previously developed RdRp CRISPR-LAMP assay, clinical results showed that Spike T478K and P681H can discriminate the mutant type form the wild type with 70% (49.66-85.50%, 95% confidence interval) and 78% (57.27-90.62%, 95% confidence interval) sensitivity, respectively, and 100% specificity (51.68-100%, 95% confidence interval), and the RdRp target can detect SARS-CoV-2 strains with 85% sensitivity (65.39-95.14%, 95% confidence interval) and 100% specificity (51.68-100%, 95% confidence interval). We believe that this automatic digital microfluid (DMF) system can advance the integrated CRISPR-LAMP technology with higher stability, sensitivity, and practicability, also for other CRISPR-associated diagnostic platforms.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , RNA-Dependent RNA Polymerase , Sensitivity and Specificity
2.
Anal Chem ; 93(48): 16184-16193, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1531973

ABSTRACT

Nowadays, rapid and accurate diagnosis of respiratory tract viruses is an urgent need to prevent another epidemic outbreak. To overcome this problem, we have developed a clustered, regularly interspaced short palindromic repeats (CRISPR) loop mediated amplification (LAMP) technology to detect influenza A virus, influenza B virus, respiratory syncytial A virus, respiratory syncytial B virus, and severe acute respiratory syndrome coronavirus 2, including variants of concern (B.1.1.7), which utilized CRISPR-associated protein 12a (Cas12a) to advance LAMP technology with the sensitivity increased 10 times. To reduce aerosol contamination in CRISPR-LAMP technology, an uracil-DNA-glycosylase-reverse transcription-LAMP system was also developed which can effectively remove dUTP-incorporated LAMP amplicons. In vitro Cas12a cleavage reaction with 28 crRNAs showed that there were no position constraints for Cas12a/CRISPR RNA (crRNA) recognition and cleavage in LAMP amplicons, and even the looped position of LAMP amplicons could be effectively recognized and cleaved. Wild-type or spike N501Y can be detected with a limit of detection of 10 copies/µL (wild-type) even at a 1% ratio level on the background (spike N501Y). Combining UDG-RT-LAMP technology, CRISPR-LAMP design, and mutation detection design, we developed a CRISPR-LAMP detection platform that can precisely diagnose pathogens with better stability and significantly improved point mutation detection efficiency.


Subject(s)
COVID-19 , SARS-CoV-2 , CRISPR-Cas Systems/genetics , Humans , Nucleic Acid Amplification Techniques
3.
PLoS One ; 16(7): e0254635, 2021.
Article in English | MEDLINE | ID: covidwho-1311289

ABSTRACT

BACKGROUND: Statins have anti-inflammatory and immunomodulatory effects that may reduce the severity of coronavirus disease 2019 (COVID-19), in which organ dysfunction is mediated by severe inflammation. Large studies with diverse populations evaluating statin use and outcomes in COVID-19 are lacking. METHODS AND RESULTS: We used data from 10,541 patients hospitalized with COVID-19 through September 2020 at 104 US hospitals enrolled in the American Heart Association's COVID-19 Cardiovascular Disease (CVD) Registry to evaluate the associations between statin use and outcomes. Prior to admission, 42% of subjects (n = 4,449) used statins (7% on statins alone, 35% on statins plus anti-hypertensives). Death (or discharge to hospice) occurred in 2,212 subjects (21%). Outpatient use of statins, either alone or with anti-hypertensives, was associated with a reduced risk of death (adjusted odds ratio [aOR] 0.59, 95% CI 0.50-0.69), adjusting for demographic characteristics, insurance status, hospital site, and concurrent medications by logistic regression. In propensity-matched analyses, use of statins and/or anti-hypertensives was associated with a reduced risk of death among those with a history of CVD and/or hypertension (aOR 0.68, 95% CI 0.58-0.81). An observed 16% reduction in odds of death among those without CVD and/or hypertension was not statistically significant. CONCLUSIONS: Patients taking statins prior to hospitalization for COVID-19 had substantially lower odds of death, primarily among individuals with a history of CVD and/or hypertension. These observations support the continuation and aggressive initiation of statin and anti-hypertensive therapies among patients at risk for COVID-19, if these treatments are indicated based upon underlying medical conditions.


Subject(s)
Antihypertensive Agents/administration & dosage , COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Registries/statistics & numerical data , Adult , Age Factors , Aged , American Heart Association , Antihypertensive Agents/therapeutic use , COVID-19/mortality , Cardiovascular Diseases/drug therapy , Drug Utilization/statistics & numerical data , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Male , Middle Aged , Mortality/trends , Population Groups/statistics & numerical data , United States
4.
Sci Total Environ ; 753: 141758, 2021 Jan 20.
Article in English | MEDLINE | ID: covidwho-718995

ABSTRACT

SARS-Cov-2 has erupted across the globe, and confirmed cases of COVID-19 pose a high infection risk. Infected patients typically receive their treatment in specific isolation wards, where they are confined for at least 14 days. The virus may contaminate any surface of the room, especially frequently touched surfaces. Therefore, surface contamination in wards should be monitored for disease control and hygiene purposes. Herein, surface contamination in the ward was detected on-site using an RNA extraction-free rapid method. The whole detection process, from surface sample collection to readout of the detection results, was finished within 45 min. The nucleic acid extraction-free method requires minimal labor. More importantly, the tests were performed on-site and the results were obtained almost in real-time. The test confirmed that 31 patients contaminated seven individual sites. Among the sampled surfaces, the electrocardiogram fingertip presented a 72.7% positive rate, indicating that this surface is an important hygiene site. Meanwhile, the bedrails showed the highest correlation with other surfaces, so should be detected daily. Another surface with high contamination risk was the door handle in the bathroom. To our knowledge, we present the first on-site analysis of COVID-19 surface contamination in wards. The results and applied technique provide a potential further reference for disease control and hygiene suggestions.


Subject(s)
Betacoronavirus , Coronavirus Infections , Equipment Contamination , Pandemics , Pneumonia, Viral , COVID-19 , Hospitals , Humans , Pneumonia, Viral/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL